Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

Identifieur interne : 002D61 ( Main/Exploration ); précédent : 002D60; suivant : 002D62

Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

Auteurs : Daniel R. Froelich [États-Unis] ; Daniel L. Mullendore ; K Re H. Jensen ; Tim J. Ross-Elliott ; James A. Anstead ; Gary A. Thompson ; Hélène C. Pélissier ; Michael Knoblauch

Source :

RBID : pubmed:22198148

Descripteurs français

English descriptors

Abstract

Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

DOI: 10.1105/tpc.111.093179
PubMed: 22198148
PubMed Central: PMC3269875


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.</title>
<author>
<name sortKey="Froelich, Daniel R" sort="Froelich, Daniel R" uniqKey="Froelich D" first="Daniel R" last="Froelich">Daniel R. Froelich</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236</wicri:regionArea>
<wicri:noRegion>Washington 99164-4236</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mullendore, Daniel L" sort="Mullendore, Daniel L" uniqKey="Mullendore D" first="Daniel L" last="Mullendore">Daniel L. Mullendore</name>
</author>
<author>
<name sortKey="Jensen, K Re H" sort="Jensen, K Re H" uniqKey="Jensen K" first="K Re H" last="Jensen">K Re H. Jensen</name>
</author>
<author>
<name sortKey="Ross Elliott, Tim J" sort="Ross Elliott, Tim J" uniqKey="Ross Elliott T" first="Tim J" last="Ross-Elliott">Tim J. Ross-Elliott</name>
</author>
<author>
<name sortKey="Anstead, James A" sort="Anstead, James A" uniqKey="Anstead J" first="James A" last="Anstead">James A. Anstead</name>
</author>
<author>
<name sortKey="Thompson, Gary A" sort="Thompson, Gary A" uniqKey="Thompson G" first="Gary A" last="Thompson">Gary A. Thompson</name>
</author>
<author>
<name sortKey="Pelissier, Helene C" sort="Pelissier, Helene C" uniqKey="Pelissier H" first="Hélène C" last="Pélissier">Hélène C. Pélissier</name>
</author>
<author>
<name sortKey="Knoblauch, Michael" sort="Knoblauch, Michael" uniqKey="Knoblauch M" first="Michael" last="Knoblauch">Michael Knoblauch</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22198148</idno>
<idno type="pmid">22198148</idno>
<idno type="doi">10.1105/tpc.111.093179</idno>
<idno type="pmc">PMC3269875</idno>
<idno type="wicri:Area/Main/Corpus">002B92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B92</idno>
<idno type="wicri:Area/Main/Curation">002B92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B92</idno>
<idno type="wicri:Area/Main/Exploration">002B92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.</title>
<author>
<name sortKey="Froelich, Daniel R" sort="Froelich, Daniel R" uniqKey="Froelich D" first="Daniel R" last="Froelich">Daniel R. Froelich</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236</wicri:regionArea>
<wicri:noRegion>Washington 99164-4236</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mullendore, Daniel L" sort="Mullendore, Daniel L" uniqKey="Mullendore D" first="Daniel L" last="Mullendore">Daniel L. Mullendore</name>
</author>
<author>
<name sortKey="Jensen, K Re H" sort="Jensen, K Re H" uniqKey="Jensen K" first="K Re H" last="Jensen">K Re H. Jensen</name>
</author>
<author>
<name sortKey="Ross Elliott, Tim J" sort="Ross Elliott, Tim J" uniqKey="Ross Elliott T" first="Tim J" last="Ross-Elliott">Tim J. Ross-Elliott</name>
</author>
<author>
<name sortKey="Anstead, James A" sort="Anstead, James A" uniqKey="Anstead J" first="James A" last="Anstead">James A. Anstead</name>
</author>
<author>
<name sortKey="Thompson, Gary A" sort="Thompson, Gary A" uniqKey="Thompson G" first="Gary A" last="Thompson">Gary A. Thompson</name>
</author>
<author>
<name sortKey="Pelissier, Helene C" sort="Pelissier, Helene C" uniqKey="Pelissier H" first="Hélène C" last="Pélissier">Hélène C. Pélissier</name>
</author>
<author>
<name sortKey="Knoblauch, Michael" sort="Knoblauch, Michael" uniqKey="Knoblauch M" first="Michael" last="Knoblauch">Michael Knoblauch</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Fluorescent Dyes (metabolism)</term>
<term>Freeze Substitution (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Vectors (genetics)</term>
<term>Genetic Vectors (metabolism)</term>
<term>Image Processing, Computer-Assisted (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Phloem (growth & development)</term>
<term>Phloem (metabolism)</term>
<term>Phloem (ultrastructure)</term>
<term>Plant Cells (metabolism)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Pressure (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Tobacco (growth & development)</term>
<term>Tobacco (metabolism)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cellules végétales (métabolisme)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Colorants fluorescents (métabolisme)</term>
<term>Congélation-dissolution (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Mutagenèse par insertion (MeSH)</term>
<term>Phloème (croissance et développement)</term>
<term>Phloème (métabolisme)</term>
<term>Phloème (ultrastructure)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Pression (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Tabac (croissance et développement)</term>
<term>Tabac (métabolisme)</term>
<term>Traitement d'image par ordinateur (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
<term>Vecteurs génétiques (génétique)</term>
<term>Vecteurs génétiques (métabolisme)</term>
<term>Végétaux génétiquement modifiés (croissance et développement)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fluorescent Dyes</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
<term>Phloème</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Genetic Vectors</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Phloem</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Vecteurs génétiques</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Genetic Vectors</term>
<term>Phloem</term>
<term>Plant Cells</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cellules végétales</term>
<term>Colorants fluorescents</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Tabac</term>
<term>Vecteurs génétiques</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Phloem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Freeze Substitution</term>
<term>Genes, Plant</term>
<term>Image Processing, Computer-Assisted</term>
<term>Microscopy, Electron, Transmission</term>
<term>Mutagenesis, Insertional</term>
<term>Plant Physiological Phenomena</term>
<term>Pressure</term>
<term>Protein Transport</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Congélation-dissolution</term>
<term>Gènes de plante</term>
<term>Microscopie électronique à transmission</term>
<term>Mutagenèse par insertion</term>
<term>Phloème</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Pression</term>
<term>Traitement d'image par ordinateur</term>
<term>Transformation génétique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22198148</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.</ArticleTitle>
<Pagination>
<MedlinePgn>4428-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.111.093179</ELocationID>
<Abstract>
<AbstractText>Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Froelich</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mullendore</LastName>
<ForeName>Daniel L</ForeName>
<Initials>DL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>Kåre H</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ross-Elliott</LastName>
<ForeName>Tim J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anstead</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Gary A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pélissier</LastName>
<ForeName>Hélène C</ForeName>
<Initials>HC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Knoblauch</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017110" MajorTopicYN="N">Freeze Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22198148</ArticleId>
<ArticleId IdType="pii">tpc.111.093179</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.111.093179</ArticleId>
<ArticleId IdType="pmc">PMC3269875</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1992 Dec;4(12):1539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1467652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9122158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1975 Nov;56(5):555-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1967 Sep;34(3):801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6050947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Nov;49(11):1699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Motil Cytoskeleton. 2008 May;65(5):368-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18330907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(12):3091-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 2006 Mar 1;120(1):44-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Dec;216(2):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12447548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1345-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20442276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1973 Sep;110(3):189-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2009 Dec;41(12):1275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):579-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2011 Aug 7;8(61):1155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Dec;54(6):877-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Feb;33(2):259-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1963 Apr;17:208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13986422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(11):2827-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17615409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1968 Mar;84(1):68-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ultrastruct Res. 1973 Nov;45(3):192-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4128209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Mar 25;23(6):1087-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7731798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Sep;6(9):2519-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1970 Sep;91(3):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24500045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Mater. 2003 Sep;2(9):600-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12942070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Jul;12(1):49-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9263452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jan;11(1):127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20932300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2003 Feb 21;220(4):419-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12623280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010;61(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ultrastruct Res. 1983 Feb;82(2):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6827647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1969 Sep;85(3):284-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515636</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Anstead, James A" sort="Anstead, James A" uniqKey="Anstead J" first="James A" last="Anstead">James A. Anstead</name>
<name sortKey="Jensen, K Re H" sort="Jensen, K Re H" uniqKey="Jensen K" first="K Re H" last="Jensen">K Re H. Jensen</name>
<name sortKey="Knoblauch, Michael" sort="Knoblauch, Michael" uniqKey="Knoblauch M" first="Michael" last="Knoblauch">Michael Knoblauch</name>
<name sortKey="Mullendore, Daniel L" sort="Mullendore, Daniel L" uniqKey="Mullendore D" first="Daniel L" last="Mullendore">Daniel L. Mullendore</name>
<name sortKey="Pelissier, Helene C" sort="Pelissier, Helene C" uniqKey="Pelissier H" first="Hélène C" last="Pélissier">Hélène C. Pélissier</name>
<name sortKey="Ross Elliott, Tim J" sort="Ross Elliott, Tim J" uniqKey="Ross Elliott T" first="Tim J" last="Ross-Elliott">Tim J. Ross-Elliott</name>
<name sortKey="Thompson, Gary A" sort="Thompson, Gary A" uniqKey="Thompson G" first="Gary A" last="Thompson">Gary A. Thompson</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Froelich, Daniel R" sort="Froelich, Daniel R" uniqKey="Froelich D" first="Daniel R" last="Froelich">Daniel R. Froelich</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22198148
   |texte=   Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22198148" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020